Optimization of the Tomato Drying Process through Artificial Neural Networks: A Focus on Food Sustainability

  • Gabriela Fuentes Tecnológico Nacional de México
  • Octavio García Alarcón Tecnológico Nacional de México
  • Adán Valles Chávez Tecnológico Nacional de México

Abstract

Fruit dehydration is a widely used technique to extend shelf life, minimize waste, and preserve nutritional quality by reducing moisture content, which inhibits enzymatic activity and microbial growth. However, traditional dehydration methods are often inconsistent due to subjective assessments, environmental factors, and prolonged drying times. This study introduces an artificial intelligence (AI) approach to optimize tomato dehydration, employing a simple neural network model to predict relative humidity levels during drying. The goal is to enhance product quality, automate the process, and potentially reduce energy consumption. Experimental dehydration at different temperatures and thicknesses provided insights into organoleptic and nutritional effects, with sensory analysis identifying an optimal drying temperature of 50°C. The results support AI integration in food dehydration for enhanced control, quality, and sustainability. Future research may focus on integrating real-time energy consumption data and multidimensional variables into AI models to optimize this process further.

Downloads

Download data is not yet available.

References

Alaloul, W. S. (2020). Data processing using artificial neural networks. Dynamic data assimilation-beating the uncertainties. IntechOpen. https://doi.org/10.5772/intechopen.91935

Anaya, M. M. (2017). Estado actual de los desperdicios de frutas y verduras en Colombia. Memorias De Congresos UTP, 194-201. Recuperado a partir de https://revistas.utp.ac.pa/index.php/memoutp/article/view/1493

Benítez, R., Escudero, G., Kanaan, S., & Rodó, D.M. (2014). Inteligencia artificial avanzada. Editorial UOC. https://openaccess.uoc.edu/bitstream/10609/140427/8/Inteligencia%20artificial%20avanzada_M%C3%B3dulo%201_Inteligencia%20artificial%20avanzada.pdf

Doymaz, I. (2007). Air-drying characteristics of tomatoes. Journal of Food Engineering, 1291-1297. https://doi.org/10.1016/j.jfoodeng.2005.12.047

Degwale, A., Asrat, F., Eniyew, K., Asres, D., Tesfa, T., & Ayalew, A. (2022). Influence of Dehydration Temperature and Time on Physicochemical Properties of Tomato (Solanum lycopersicum L.) Powder. Frontiers in Sustainable Food Systems.

Espinosa, N. V.-C.-M.-B. (2023). Modelado dinámico y control del proceso de secado de productos agroindustriales. La Mecatrónica en México, 1-16. https://www.mecamex.net/revistas/LMEM/revistas/LMEM-V12-N02-01.pdf

Fuentes G., G. O. (2023). Aprovechando la inteligencia artificial como herramienta metodológica para la optimización del proceso de deshidratación de tomate. In Varios, Optimización, sustentabilidad y políticas públicas: un enfoque robusto (pp. 92-106). CENID. https://doi.org/10.23913/9786078830244

Gómez, M. (2019). Deshidratado de tomate saladette en un secador de charolas giratorias. [tesis Universidad tecnológica de la Mixteca ] Huajapan de León, Oaxaca, México. http://jupiter.utm.mx/~tesis_dig/10991.pdf

Gustavsson, J. C. (2011). J., Cederberg, C., Sonesson, U., Van Otterdijk, R., & Meybeck, A. (2011). Global food losses and food waste. Düsseldorf.

Khan, M. I. (2022). Application of machine learning-based approach in food drying: Opportunities and challenges. Drying Technology, 1051-1067. https://doi.org/10.1080/07373937.2020.1853152

Flórez, R., & Fernández, J. (2008). Las redes neuronales artificiales, fundamentos teoricos y aplicaciones practicas. España, Netbiblo.

Madhankumar, S., Viswanathan, K., Taipabu, M. I., & Wu, W. (2023). A review on the latest developments in solar dryer technologies for food drying process. Sustainable Energy Technologies and Assessments, 58, Article 103298. https://doi.org/10.1016/j.seta.2023.103298

Monsalve, J. &. (2007). Evaluación de dos métodos de deshidratación del tomate (Lycopersicom esculentum mill) variedad manzano. Multiciencias, 7(3), 256-265.

Mordor Intelligence. (n.d.). Dehydrated food market size. Retrieved October 28, 2024, from https://www.mordorintelligence.com/industry-reports/dehydrated-food-market/market-size

Secretaría de Agricultura y Desarrollo Rural. (s.f.). ¿A qué nos referimos con autosuficiencia alimentaria? Gobierno de México. Retrieved October 28, 2024, from https://www.gob.mx/agricultura/colima/articulos/a-que-nos-referimos-con-autosuficiencia-alimentaria-235470?idiom=es

Sengkhamparn, N. &. (2019). Phenolic compound extraction from industrial tomato waste by ultrasound-assisted extraction. Conference series: materials science and engineering (Vol. 639, No. 1), 012040. https://doi.org/10.1088/1757-899X/639/1/012040

Sullivan, V. K.-E. (2020). Dried fruit consumption and cardiometabolic health: a randomised crossover trial. . British Journal of Nutrition, 2020 Nov 14; 124(9), 912-921. https://doi.org/10.1017/S0007114520002007.

Yegrem, L., Mengestu, D., Legesse, O., Abebe, W., & Girma, N. (2022). Nutritional compositions and functional properties of New Ethiopian chickpea varieties: Effects of variety, grown environment and season. International Journal of Food Properties, 25(1), 1485–1497. https://doi.org/10.1080/10942912.2022.2087674
Published
2025-03-06
How to Cite
Fuentes, G., García Alarcón, O., & Valles Chávez, A. (2025). Optimization of the Tomato Drying Process through Artificial Neural Networks: A Focus on Food Sustainability. RIDE Revista Iberoamericana Para La Investigación Y El Desarrollo Educativo, 15(30). https://doi.org/10.23913/ride.v15i30.2322
Section
Scientific articles

Most read articles by the same author(s)