Machine Learning Algorithms for Predicting of Academic Achievement
Abstract
In this research, two machine learning classifiers were implemented, a multilayer perceptron (MLP) and a gradient boosting model (GB), to predict the degree of academic achievement in Spanish and mathematics of basic education students in two stages, sixth of primary (2008) and third of secondary (2011), based on contextual variables obtained from the Enlace test of the state of Tlaxcala, Mexico. Thirteen input variables were considered. The relative importance of these was determined by the random forest (RF) classifier. MLP and GB classifiers were trained and tested with a dataset of 11 036 records of students who remained in the school system from 2008 to 2011. The models were trained and tested in prediction for 2008 and 2011. In Spanish MLP outperformed GB with a global classification accuracy (PG) of 70.1 % in 2008 and 61.1 % in 2011. GB obtained better performance in mathematics with a PG of 68.8 % in 2008 and 63.5 % in 2011. It was observed that the score in Spanish has a strong association with the degree of academic achievement in mathematics. Scores in Spanish and mathematics have greater relative importance with respect to contextual factors considered as sex, scholarship, school shift, and so on. In the population of students analyzed, it is observed that, in Spanish and mathematics, the proportion of women is higher than the proportion of men in achievement levels 1 (elementary) and 2 (good or excellent); in contrast, in both subjects this proportion is reversed at achievement level 0 (insufficient).
Downloads
This work is licensed under a Creative Commons Attribution 4.0 International License.
In order to promote the development and dissemination of research in education in Latin America, the Ibero-American Journal for Educational Research and Development (RIDE) adhered to the Budapest Open Access Initiative, which is why it is identified as a Open access publication. This means that any user can read the complete text of the articles, print them, download them, copy them, link them, distribute them and use the contents for other purposes. Creative Cummons licenses allow users to specify the rights to use an open access journal available on the Internet in such a way that users know the rules of publication. Authors who publish in this journal accept the following conditions: Authors they keep the author's rights and give the magazine the right of the first publication, with the work registered with the attribution license of Creative Commons, which allows third parties to use the published material whenever they mention the authorship of the work and the first publication in this The authors can make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as they clearly indicate that The work was published for the first time in this magazine. Authors are allowed and recommended to publish their work. low on the Internet (for example on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and to a greater and faster dissemination of the published work