Design of a model to automate the prediction of academic performance in students of IPN

Abstract

Educational data mining allows extracting useful and understandable knowledge from academic data to solve problems about various teaching and learning processes. One of the most popular applications of educational data mining is the prediction of academic performance. The main objective of this work was to design and automate a predictive model of the academic performance of students of the National Polytechnic Institute (IPN). For the construction of the model, the qualifications of five academic activities and the final grade of 94 students enrolled in an Engineering career belonging to the IPN were analyzed. This model was applied to 86 students to predict their academic performance. Subsequently, these predictions were compared with the actual results obtained by the students at the end of the course. Accuracy was obtained from the predictions of the course approval of up to 73% and only with five attributes corresponding to the qualifications of the initial academic activities. In addition, a platform was built that facilitates the construction and use of the model to automatically predict the academic performance of new students. Also, the main academic activities that influenced academic performance were identified through the value of the probabilities of the model. In particular, the results showed that activities 3, 4 and 5 were those that most significantly influenced the prediction of approval of the students who participated in this study. The development of this type of models allows educational institutions to predict the academic performance of their students and identify the main factors that influence it.

Downloads

Download data is not yet available.

References

Ballesteros, A., y Sánchez, D. (2013). Minería de datos educativa: Una herramienta para la investigación de patrones de aprendizaje sobre un contexto educativo. Revista Latinoamericana de Física Educativa, 7(4), 662-668. Recuperado de http://www.lajpe.org/dec13/22-LAJPE_814_bis_Alejandro_Ballesteros.pdf

Espinosa, M., Farías, N., y Verduzco, J. A. (2016). Análisis de los Datos Históricos de la Programación de Cursos en los CECATI del Estado de Colima. Revista Iberoamericana para la Investigación y el Desarrollo Educativo, 6(12), 114-134. Recuperado de http://www.ride.org.mx/index.php/RIDE/article/view/192/842

Estrada, R. I., Zamarripa, R. A., Zúñiga, P. G., y Martínez I. (2016). Aportaciones desde la minería de datos al proceso de captación de matrícula en instituciones de educación superior particulares. Revista Electrónica Educare, 20(3), 1-21. doi: 10.15359/ree.20-3.11

Jaramillo, A., y Paz H. (2015). Aplicación de Técnicas de Minería de Datos para Determinar las Interacciones de los Estudiantes en un Entorno Virtual de Aprendizaje. Revista Tecnológica ESPOL, 28(1), 64-90. Recuperado de http://www.rte.espol.edu.ec/index.php/tecnologica/article/view/351/229

Jishan, S., Rashu, R., Haque, N., y Rahman, R. (2015). Improving accuracy of students' final grade prediction model using optimal equal width binning and synthetic minority over-sampling technique. Decision Analytics, 2(1), 1-25. doi: 10.1186/s40165-014-0010-2

Han, J. (2012). Data Mining: Concepts and Techniques. Waltham, Estados Unidos: Morgan Kaufmann Publishers.

Hernández, J., Ramírez M., y Ferri, C. (2004). Introducción a la minería de datos. Madrid, España: Pearson.

Kotsiantis, S. B., Pierrakeas, C. J., y Pintelas, P. E. (2003). Preventing student dropout in distance learning using machine learning techniques. En V. Palade, R. J. Howlett y L. Jain (Eds.). Lecture Notes in Computer Science: Vol. 2774. Knowledge-Based Intelligent Information and Engineering Systems (pp. 267–274). Heidelberg, Alemania: Springer-Verlag. doi: 10.1007/978-3-540-45226-3_37

Luan, J. (2002). Data Mining and Its Applications in Higher Education. New Directions for Institutional Research, (113), 17-36. doi: 10.1002/ir.35

Márquez, C., Romero, C., y Ventura, S. (2012). Predicción del Fracaso Escolar mediante Técnicas de Minería de Datos. IEEE-RITA, 7(3), 109-117. Recuperado de http://rita.det.uvigo.es/201208/uploads/IEEE-RITA.2012.V7.N3.A1.pdf

Martínez, A., Hernández, L. I., Carillo, D., Romualdo, Z., y Hernández, C. P. (2013). Factores asociados a la reprobación estudiantil en la Universidad de la Sierra Sur, Oaxaca. Temas de Ciencia y Tecnología, 17(51), 25-33. Recuperado de http://www.utm.mx/edi_anteriores/temas51/T51_1Ensayo3-FactAsocReprobacion.pdf

Michie, D., Spiegelhalter D., y Taylor, C. (1994). Machine learning, neural and statistical classification. Nueva Jersey, Estados Unidos: Prentice Hall.

Mueen, A., Zafar, B., y Manzoor U. (2016). Modeling and Predicting Students’ Academic Performance Using Data Mining Techniques. International Journal of Modern Education and Computer Science, 11, 36-42. doi: 10.5815/ijmecs.2016.11.05

Pacheco, A., y Fernández, Y. (2015). Aplicación de técnicas de descubrimiento de conocimientos en el proceso de caracterización estudiantil. Ciencias de la Información, 46(3), 25-30. Recuperado de: http://www.redalyc.org/articulo.oa?id=181443340004

Peña, A. (2014). Review: Educational data mining: A survey and a data mining based analysis of recent works. Expert Systems with Applications, 41(4),1432-1462. doi: 10.1016/j.eswa.2013.08.042

Romero, C., y Ventura, S. (2010). Educational data mining: A review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618. doi: 10.1109/TSMCC.2010.2053532

Romero, C., y Ventura, S. (2012). Data mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(1), 12-27. doi: 10.1002/widm.1075

Valero, S., Salvador, A., y García, M. (2010). Minería de datos: predicción de la deserción escolar mediante el algoritmo de árboles de decisión y el algoritmo de los k vecinos más cercanos. En M. E. Prieto, J. M. Dodero y D. O. Villegas (Eds.)., Lecture Notes in Computer Science: Vol. Kaambal. Recursos digitales para la educación y la cultura. (pp. 33-39). Mérida, México. Recuperado de http://www.utim.edu.mx/~svalero/docs/e1.pdf

Vera, J. A., Ramos, D. Y., Sotelo, M. A., Echeverría, S., y Serrano, D. M. (2012). Factores asociados al rezago en estudiantes de una institución de educación superior en México. Revista Iberoamericana de Educación Superior, 3(7), 41–56. doi: 10.22201/iisue.20072872e.2012.7.81

Witten, I., Frank, E., y Hall, M. (2005). Data Mining: Practical Machine Learning Tools and Techniques. Massachusetts, Estados Unidos: Morgan Kaufmann Publishers.

Xing, W., Guo, R., Petakovic, E., y Goggins, S. (2015). Participation-based student final performance prediction model through interpretable Genetic Programming: Integrating learning analytics, educational data mining and theory. Computers in Human Behavior, 47, 168-181. doi: 10.1016/j.chb.2014.09.034

Published
2018-02-27
How to Cite
Rico Páez, A., & Sánchez Guzmán, D. (2018). Design of a model to automate the prediction of academic performance in students of IPN. RIDE Revista Iberoamericana Para La Investigación Y El Desarrollo Educativo, 8(16), 246 - 266. https://doi.org/10.23913/ride.v8i16.340
Section
Scientific articles