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Resumen 

Debido al alto nivel de competencia industrial, las compañías buscan hacer cada vez más 

eficientes sus operaciones mediante la reducción de costos, sin afectar la calidad de sus 

productos. Una de las formas más comúnmente utilizadas para lograr este objetivo es 

optimizar el funcionamiento de los equipos productivos, por lo que en este trabajo de 

investigación se desarrolló una metodología para realizar el análisis de fallas, con el objetivo 

de identificar su causa raíz y mejorar el desempeño del equipo y maquinaria. La metodología 

emplea una red bayesiana dinámica para el análisis. Esta herramienta proporciona 

información sobre la probabilidad de ocurrencia de las fallas, lo que resulta sumamente útil, 

ya que permite establecer prioridades en las acciones correctivas para eliminarlas o reducir 

su incidencia, además, para los equipos que requieren monitoreo continuo, se emplea el filtro 

de Kalman y el filtro de Kalman extendido cuando corresponda, su propósito es eliminar el 

ruido en el proceso de adquisición de datos para obtener información confiable para el 

análisis, además, permite estimar con precisión el estado de ciertas variables en lugares donde 

es difícil o imposible colocar dispositivos de medición directa. La implementación de esta 

metodología permite una mejora sustancial en el proceso de análisis de fallas y, en 

consecuencia, hace más efectivas las acciones correctivas para su eliminación. 

Palabras Clave: Redes bayesianas, red bayesiana dinámica, análisis de mantenimiento, 

Filtro de Kalman. 

 

Abstract 

Due to the high level of industrial competition companies strive to enhance their operational 

efficiency by reducing costs without affecting the quality of their products. One of the most 

common approaches to achieving this goal is optimizing the operation of production 

equipment. Therefore, this research develops a methodology for failure analysis aimed at 

identifying root causes and improving equipment and machinery performance. The 

methodology employs dynamic Bayesian network for failure analysis. This tool provides 

valuable information about the probability of failure occurrence, allowing the prioritization 

of corrective actions to eliminate failures and reduce their incidence. Additionally, for 

equipment requiring continuous monitoring, the Kalman filter and, when applicable, the 

extended Kalman filter are employed., Its purpose is to eliminate noise in the data acquisition 

process, ensuring reliable information for analysis. Moreover, it enables the accurate 
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estimation of certain variables in locations where direct measurement is challenging or 

unfeasible. Implementing this methodology leads to substantial improvements in the failure 

analysis process, making corrective actions more effective in eliminating failures. 

Keywords: Bayesian Networks, Dynamic Bayesian Networks, maintenance analysis, 

Kalman filter. 

 

Resumo 

Devido ao alto nível de competição industrial, as empresas buscam tornar suas operações 

cada vez mais eficientes, reduzindo custos, sem afetar a qualidade de seus produtos. Uma das 

formas mais utilizadas para atingir esse objetivo é otimizar a operação dos equipamentos de 

produção, por isso neste trabalho de pesquisa foi desenvolvida uma metodologia para realizar 

análises de falhas, com o objetivo de identificar sua causa raiz e melhorar o desempenho dos 

equipamentos e máquinas. A metodologia emprega uma rede bayesiana dinâmica para 

análise. Esta ferramenta fornece informações sobre a probabilidade de ocorrência de falhas, 

o que é extremamente útil, pois permite estabelecer prioridades nas ações corretivas para 

eliminá-las ou reduzir sua incidência. Além disso, para equipamentos que exigem 

monitoramento contínuo, o filtro de Kalman e o filtro de Kalman estendido são utilizados 

quando apropriado. Sua finalidade é eliminar ruídos no processo de aquisição de dados para 

obter informações confiáveis para análise. Além disso, permite estimar com precisão o estado 

de certas variáveis em locais onde é difícil ou impossível colocar dispositivos de medição 

direta. A implementação desta metodologia permite uma melhoria substancial no processo 

de análise de falhas e, consequentemente, torna mais eficazes as ações corretivas para a sua 

eliminação. 

Palavras-chave: Redes bayesianas, rede bayesiana dinâmica, análise de manutenção, 

filtro de Kalman. 
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Introduction 

The performance of the industrial maintenance department has always been a 

challenge for production plant managers, since keeping the equipment in a functional state is 

key to achieving the objectives of the manufacturing department. This situation has driven 

the development of various strategies to improve the performance indicators of the 

department in charge of maintaining industrial equipment in optimal conditions and offering 

better service. 

Different maintenance systems have been implemented to maintain the reliability and 

efficiency of industrial equipment. Some of the most commonly used techniques are 

preventive, proactive and predictive maintenance, the latter making use of machine learning 

techniques, which have emerged as a promising approach to address this challenge (Mourtzis, 

Siatras, & Angelopoulos, 2020). 

This research work proposes a methodology for the analysis of equipment failures 

through the use of dynamic Bayesian networks, as a viable alternative for industry and 

companies. Its objective is to find the root cause of the problems and implement corrective 

actions, establishing priorities based on the probability of occurrence of failures, in order to 

improve the performance of the maintenance department and achieve the goal of managing 

in a more efficient way the expenses generated by maintenance and downtime in productive 

and non-productive equipment due to failures. The dynamic component of the Bayesian 

network is used to model complex relationships between various system parameters, 

allowing an accurate prediction of the equipment status and its failure patterns (Saeidi et al., 

2019). 

One of the advantages of the proposed methodology for failure analysis in 

maintenance is the improvement in obtaining data on equipment that requires monitoring of 

key parameters in real time. This is achieved by using the Kalman filter, which eliminates 

possible noise that could generate incorrect or inaccurate readings, thus obtaining reliable 

information for analysis. In this method, the Kalman filter is used to eliminate noise from the 

signals received from the parameters measured for monitoring the status of the selected 

equipment. 

The use of the Kalman filter allows obtaining signals from the parameters used for 

monitoring without noise, which makes it possible to determine the status of the device with 

an acceptable level of reliability and to schedule corrective and preventive actions before 

failures occur in the monitored equipment or device. 
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The increasing availability of data obtained from monitoring the condition of critical 

equipment has opened new opportunities for the development of data-driven maintenance 

algorithms. A considerable number of industrial applications require the measurement of a 

large number of physical variables to obtain sufficient and quality information in the system 

to obtain the desired level of performance. However, some of these variables cannot be 

measured, either due to their cost or reliability problems. In this context, the Kalman filter 

plays a key role in many industrial applications (Auger, et al., 2013). 

The need to have the necessary information for decision making is essential in the 

manufacturing industry, the collection of data for equipment monitoring through the use of 

different types of instruments that provide valuable information to determine the status of a 

piece of equipment, however, this information is not always accurate, due to different causes 

such as variation in the measuring instruments, distances between the sensor and the 

computer, temperature, etc., this causes the information collected by the measuring 

instruments to not be statistically reliable. 

In other cases, the parameters of interest cannot always be measured directly, so it is 

necessary to estimate them from the available information, by using tools such as the Kalman 

filter which is used in many fields such as navigation, aerospace engineering, space 

engineering, physics, audio signals and control engineering (Ai, Ai, Gray, Salzburger, & 

Styles, 2023) , it is also useful for smoothing noisy signals, however, it is not always easy to 

estimate the exact state of a system due to several reasons, including the imperfection of the 

mathematical model, dynamic environments, error with inadequate distribution (Non-

Gaussian), inadequate parameters and lack of linearity. 

Table 1 shows some notations used in different published articles to refer to the most 

common concepts on Kalman filter topics, some of them cited in this research paper. 
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Table 1. Notations used in various studies. 

Parameter Notation 

State estimation in time k 𝑥𝑒[𝑘]    

Prediction in time k+1 

(State estimated a priori) 
𝑥𝑝[𝑘+1] 𝑥[𝑘+1|𝑘] 𝑥[𝑘+1]

−  𝑥̂𝑘+1 

Estimated status a posteriori 𝑥𝑒[𝑘+1] 𝑥[𝑘+1|𝑘+1] 𝑥[𝑘+1]
+   

Estimating the error in the 

covariance matrix at time k 
𝑃𝑒[𝑘] 𝑃𝑡   

Predicting the covariance error 

matrix at time k+1 
𝑃𝑝[𝑘+1]    

Measurement vector in time k 𝑦𝑘 𝑧𝑘   

Source: Own elaboration 

 

Materials and methods 

Industrial Maintenance 

In the industry there are different techniques for equipment maintenance, the main 

objective of which is to keep the equipment in a functional state and to eliminate or reduce as much 

as possible unscheduled downtime due to equipment failures. Among the most widely used 

systems in the industry, due to their proven effectiveness, are the following: 

Predictive maintenance, which is a technique based on the periodic monitoring and analysis 

of some equipment parameters during its operation that allows identifying failures in early stages 

(Altoé Mendes, Riva Tonini, Rodrigues Muniz, and Bravin Donadel, 2016). 

Preventive maintenance, which is defined as the activity in which tasks are performed 

according to prescribed criteria or in predetermined time periods. To establish optimal maintenance 

periods, a detailed and comprehensive assessment is required. However, this assessment is 

generally not performed, and instead the manufacturer's recommendations are applied (Sánchez-

Herguedas, Mena-Nieto, Crespo-Marquez, & Rodrigo-Muñoz, 2024). 

Corrective maintenance, which involves restoring equipment functionality after a failure 

has occurred. This approach minimizes the cost of servicing the equipment, thereby extending the 

maintenance interval, but comes at the expense of an increased risk of equipment unavailability 

and increased repair time and cost, resulting from equipment downtime caused by unscheduled 

shutdowns. ( Moleda , Małysiak-Mrozek , Ding , Sunderam , & Mrozek , 2023). 
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Bayesian Networks 

In Bayesian networks (BN), directed acyclic graphs (DAGs) are used to describe 

conditional dependencies between random variables 𝑋1,𝑋2, … . . 𝑋𝑛 . There is a one-to-one mapping 

between the n nodes of the DAG and the variables, and the directed edges between the nodes 

denote the dependency between the variables  (Grzegorczyk, 2024). 

The joint probability distribution over all the variables in the network can be determined 

by calculating the product of all the prior and conditional probability distributions and its 

mathematical representation is shown in equation (1). 

Pr(𝑋) = Pr(𝑋1𝑋2, … , 𝑋𝑛) = ∏ Pr (𝑋𝑖|𝑃𝑎(𝑋𝑖))𝑛
𝑖=1                                    (1) 

The structure of a Bayesian network and its numerical probabilities can be obtained from 

experts or by learning from data. (Kraisangka and Druzdzel, 2018). 

Figure 1 shows a diagram of a simple Bayesian network, where a circle or ellipse represents 

the nodes of the graph, the variables identified as are shown inside the circle, 𝑋1,𝑋2, 𝑋3 , and the 

arrows, also called arcs of the graph, indicate the causal relationships between these random 

variables. For example, in this diagram, the variables 𝑋2 and  𝑋3 have a causal dependence on the 

variable 𝑋1 . 

 

Figure 1. Basic configuration of a Bayesian network. 

Source: Own elaboration 

Bayes' Theorem 

Bayes' theorem can be represented in a mathematical formula that relates the unconditional 

and conditional probabilities of events A and B, where B is an event with prior information and A 
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is a conditional event, and A is a conditional event, further assuming 𝑃(𝐵) ≠  0,  so that the 

probability of A occurring given B, can be determined by equation (2) (Conrady and Joufee, 2015). 

𝑃(𝐴|𝐵) = 𝑃(𝐴) ∗
𝑃(𝐵|𝐴)

𝑃(𝐵)
                                                               (2) 

 where: 

𝑃(𝐴)It is the marginal probability (also called unconditional probability) that event A occurs; 

 𝑃(𝐴|𝐵) represents the conditional probability of event A occurring once event B has occurred. 

𝑃(𝐵)indicates the marginal probability of occurrence of event B and 

 
𝑃(𝐵|𝐴)

𝑃(𝐵)
  represents the likelihood ratio, also known as the Bayes factor. 

 

Dynamic Bayesian Networks 

Bayesian networks cannot accurately represent the dynamic relationship between process 

parameters, however, a dynamic Bayesian network can be created to incorporate the influence of 

the time dimension within the Bayesian network (Mao, et al., 2023). Dynamic Bayesian networks 

are an extension of Bayesian networks that model domains from a temporal perspective; in 

essence, they are time-extended Bayesian networks (Saada, Kouppas, Li, & Meng, 2022). Its 

biggest advantage is that it can easily work with uncertain or missing data and its prediction results 

are reliable and reasonable (Wei, Yu, & Li, 2023). Time steps reflect the change in the 

state/probabilities of the parameters in the model. Dynamic Bayesian networks describe discrete 

time series consisting of observations of variables over multiple instants of time called time steps 

or time intervals, the time between two consecutive intervals is assumed to be always the same. 

According to Leão et al (2021), a dynamic Bayesian network is a pair ( 𝐵0 , 𝐵)͢ where: 

 𝐵0 is an a priori Bayesian network, which defines the joint probability distribution on the 

variable in 𝑡 = 0 (it is assumed that the first time interval in a dynamic Bayesian network is 𝑡 =

0  and the last is 𝑡 = 𝑇), that is 𝐵0 = 𝑃(𝑋|0|). 

 𝐵͢It is the game of all transition networks𝐵͢  [0: 𝑇] 𝑐𝑜𝑛 𝑡 𝜖 {1 … … 𝑇}  

The distribution over the variables in the time interval t is defined as: 

 (𝐵0  , 𝐵͢  )  =  𝑃(𝑋[𝑡]|𝑋[0: 𝑡 − 1] (Leão, Madeira, Gromicho, de Carvalho, and Carvalho, 

2021). 

Dynamic Bayesian networks are not limited to a single time series, they support both 

temporal and non-temporal nodes in the same model with temporal nodes being the initial 
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conditions in time. 𝑡 = 0. Dynamic Bayesian networks are probabilistic graphical models that 

describe uncertainty in diverse situations (Khan, Khan, & Veitch, 2020). 

Figure 2 shows a general form of representation of a dynamic Bayesian network, in which 

time series are modeled with windows represented at a time instant T, in which a Bayesian network 

is generated that at each time instant receives information from time instant T-1 in addition to the 

observable variables. The dotted lines represent the flow of information between the time windows 

(Reguero Alvarez, 2011).  

 

Figure 2. Structure of a dynamic Bayesian network.

Source: (Reguero Alvarez, 2011) 

 

Kalman filter 

Kalman filter is a recursive algorithm that uses a set of mathematical equations and data 

inputs to estimate the factors such as position, velocity, and true values of measurements of an 

object when the measurement values have some level of uncertainty. Using this filter allows to 

determine the internal state of a dynamic linear system by processing a set of discrete 

measurements of a system in a reliable manner. Both the measurements and the system are subject 

to random disturbances, also called noise, and this technique removes interferences in the signals 

and provides accurate data. Kalman R. E. (1960) published a paper describing a recursive solution 

for discrete linear data filtering problems and addresses the estimation of the state of a discrete-

time controlled process, governed by the stochastic equation (3). 

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘                                                               (3) 
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The measurement vector at time k is defined by equation (4). 

𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘                                                                                (4) 

Where the random variables 𝑤𝑘represent the process noise and 𝑣𝑘the measurement noise, 

which are assumed to be independent of each other, with a normal distribution with zero mean. In 

addition, 𝐴𝑘is the state transition matrix which maps the effect of each state parameter of the 

system at time k to the state of the system at time k+1 (e.g. temperature and pressure at time k 

affect the pressure at time k+1 ). 𝐻𝑘 is the transformation matrix that maps the parameters of the 

state vector to the measurement domain (Welch and Bishop, 1997) . 

In the case of continuous time, discrete measurements and non-linear systems the state 

vector ẋ(𝑡)can be represented by equation (5) and the measurement available at an instant 

𝑡𝑘 (𝑧(𝑡𝑘) by equation (6). 

ẋ(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) + 𝑤(𝑡)                                                                 ̇ (5) 

𝑧(𝑡𝑘) = 𝑔(𝑥(𝑡𝑘), 𝑢(𝑡𝑘)) + 𝑣(𝑡𝑘)                                                                 (6) 

where 𝑢(𝑡)represents the system input, the system noise is represented by 𝑤(𝑡)  while 

𝑣(𝑡𝑘) the measurement noise, which are considered as Gaussian processes with covariance 

matrices Q for the system noise and R for the measurement noise (González-Cagigal, Rosendo-

Macías, and Gómez-Expósito, 2019). 

Kalman filter can be used for joint estimation of state and parameters in which both the 

state variables and parameters in the model are simultaneously estimated (Huang, Li, & Yan, 

2010). In this research work, Kalman filter is used to perform an analysis of the data provided from 

a three-phase generator to know its state. 

 Other typical uses of the Kalman filter include, in addition to smoothing noisy data, 

providing estimates of parameters of interest. Common applications include global positioning 

system receivers, phase-locked loops in radio equipment, smoothing the output of laptop  

(Faragher, 2012)  trackpads , and many more applications. For a dynamic system, the estimation 

of its internal states is important because in real-time applications the number of sensors that can 

be implemented is limited, and some sensors are too expensive to implement and not all physical 

components can always be measured (Shabbouei Hagh, Mohammadi, Mikkola, and Handroos, 

2023). 
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There are two processes involved in the Kalman filter algorithm, one is prediction and the 

other is correction, as shown in Figure 3, equations (7) and (8) are used for time update calculation 

and equations (9), (10) and (11) for the correction stage.  

 

Figure 3. Kalman filter algorithm 

 

Source: Prepared by the authors based on information from ( Babu and Parthasarathy, 2022)

Because Kalman filters are recursive in nature, the process is repeated at each time step, 

resulting in a new estimate and an updated covariance with the predicted state at subsequent 

iterations (Babu and Parthasarathy, 2022). 

Thus, the Kalman filter algorithm is described in two steps: prediction and correction: In 

the prediction stage, equation (7) generates an a priori estimate, while in equation (8) the 

covariance of the error associated with the a priori estimate is obtained. 

𝑥̂𝑛 = 𝐴𝑥̂𝑛−1 + 𝐵𝑢𝑛                                                            (7) 

𝑃𝑛 = 𝐴𝑃𝑛−1𝐴𝑇 + 𝑄                                                             (8) 

In the correction stage, equation (9) helps us to obtain the Kalman filter gain, equation (10) 

helps us to obtain the a posteriori estimate with the new measurements, while equation (11) 

calculates the covariance of the error associated with the a posteriori estimate. 
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𝐾𝑛 = 𝑃𝑛,𝑛−1𝐻𝑇(𝐻𝑃𝑛,𝑛−1𝐻𝑇 + 𝑅𝑛)−1                                                 (9) 

𝑥̂𝑛 = 𝐴𝑥̂𝑛,𝑛−1 + 𝐾𝑛(𝑍𝑛 − 𝐻𝑥̂𝑛)                                                          (10) 

𝑃(𝑛|𝑛) = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1                                                                                      (11) 

where K represents the Kalman gain, 𝑃𝑛|𝑛 the uncertainty estimates for the current state, H 

the observation matrix, 𝑅𝑛 the uncertainty matrix in the measurements, and 𝑍𝑛 the state vector of 

the measurements  (Babu & Parthasarathy, 2022). 

Covariance matrices provide information about the quality of the estimates, however, if the 

state or noise covariance matrices are not estimated correctly, the covariance matrix in the error 

estimate has no meaning. 

Masnadi-Shirazi et al. (2019) provide a tutorial and a step-by-step mathematical procedure 

for the derivation of the Kalman filter equations. These authors consider the target state vector 

𝑥𝑘 ∈ ℝ𝑛, with k as a time index and the discrete-time stochastic model is represented by equation 

(12). 

𝑥𝑘 = 𝜙𝑘−1(𝑥𝑘−1, 𝑢𝑘−1)                                               (12) 

Where 𝜙𝑘−1 is a known, possibly non-linear, function of the state 𝑥𝑘−1 and 𝑢𝑘−1 is the 

noise which accounts for poorly posed models or errors in the established objectives. It should also 

be considered that the process measurements are 𝑧𝑘 ∈ ℝ𝑚, which are related by equation (13). 

𝑧𝑘 = ℎ𝑘(𝑥𝑘, 𝑤𝑘)                                                            (13) 

ℎ𝑘   is a known function, possibly non-linear and 𝑤𝑘  is the measurement noise, which is 

assumed to be white noise, as is 𝑢𝑘−1, both with known probability distribution functions and 

independent of each other. 

Assuming now that 𝜙𝑘  and ℎ𝑘 are linear functions and assuming that the noise and initial 

state distributions are Gaussian, one can write the following linear/Gaussian model consisting of 

the following three parts: 

1. - A difference vector defined by equation (14). 

𝑥𝑘+1 = 𝛷𝑘𝑥𝑘 + 𝑢𝑘       𝑘 = 0,1,2,3 ….                                                        (14) 

Which defines how the random vector 𝑥𝑘changes over time. 

2.- An initial random vector 𝑥0 with an initial estimate 𝑥̂0 with a value in the initial 

covariance 𝑃0. 

3.- Process measurements calculated from equation (15). 

𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝑤𝑘     𝑘 = 0,1,2 …                                                            (15) 
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A key limitation for many applications of the Kalman filter is the assumption of linear 

models for the system and the measurement, as well as Gaussian distributions for the system state, 

process, and measurement noise. This has motivated the development of a number of extensions 

for nonlinear systems. Several variations of the Kalman filter have been developed to improve its 

performance. The extended Kalman filter (EKF) and the unscented Kalman filter are widely used 

for nonlinear systems, which are approximated to linear systems by linearization techniques 

(Aghamolki, Miao, Fan, Jiang, & Manjure, 2015). However, since the extended Kalman filter uses 

linearization to convert a nonlinear system into a partially linear one, its performance may be 

affected in highly nonlinear systems (Kim, Petrunin, & Shin, 2022). 

 

Extended Kalman Filter 

For non-linear processes a commonly used technique is the extended Kalman filter, which 

linearizes a non-linear function f at a time k-1 and predicts the image at a time k, the estimation is 

done in two steps: the time update equations, and the measurement update equations. The time 

update equations (16) and (17) are: 

𝑥̂𝑘|𝑘−1 = 𝑓(𝑥̂𝑘−1|𝑘−1, 𝑢𝑘)                                                                              (16) 

𝑃𝑘|𝑘−1 = 𝐹𝑘𝑃𝑘−1|𝑘−1𝐹𝑇 + 𝑄𝑘                                                                           (17) 

Where 𝑄𝑘is a positive definite matrix representing the process noise covariance and 𝐹𝑘by 

equation (18). 

 𝐹𝑘 =
𝜕𝑓

𝜕𝑥
(𝑥̂𝑘−1|𝑘−1, 𝑢𝑘)                                                              (18) 

The measurement update equations are used to correct the estimated states and the 

predicted error covariance in the time update equations by comparing the estimated states with the 

measurements represented by equations (19), (20) and (21). 

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝐾
𝑇(𝐻𝑘𝑃𝑘𝐻𝐾

𝑇 + 𝑅𝑘)−1                                                  (19) 

𝑥̂𝑘|𝑘 = 𝑥̂𝑘|𝑘−1 + 𝐾𝑘(𝑦𝑘 − 𝐻𝑘𝑥̂𝑘|𝑘−1                                                                       (20) 

𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1                                                                                                 (21) 

where 𝑅𝑘 is a positive definite matrix representing the noise covariance of the 

measurements and 𝐻𝑘 is the Jacobian of ℎ(𝑥𝑘).  (Gaouti, Colin, Thiam, & Mazellier, 2021). 

Figure 4 shows the operation diagram of the extended Kalman filter with the time and 

measurement update equations. 
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Figure 4. Operation diagram of the extended Kalman filter. 

 

Source: Own elaboration based on information from (Gaouti, Colin, Thiam, and Mazellier, 2021)

 

Results 

Industrial Equipment Maintenance Analysis Method through the use of 

Kalman Filter and Dynamic Bayesian Networks 

As a result of the analysis carried out, a methodology for failure analysis was developed 

that can be applied to any industrial equipment included in a maintenance program, with the aim 

of keeping it in optimal operating conditions. This methodology incorporates the technique of 

dynamic Bayesian networks, which allows the evaluation of the temporal relationship between the 

equipment parameters and the management of conditional probabilities of failure, which facilitates 

the prioritization of corrective actions. For equipment that requires real-time monitoring, the 

Kalman filter is used to increase the reliability of the data obtained. 

Figure 5 shows the flow to follow to perform the analysis of Industrial Equipment 

Maintenance through the use of Kalman filters and Dynamic Bayesian Networks. The first step 

consists of selecting the equipment to be analyzed, whose variables influence each other over time 

and can be evaluated through dynamic Bayesian networks (DBN). This system is useful for 

evaluating the effect of various factors in complex systems, such as those whose performance 

depends on multiple interdependent variables. 



 

         Vol. 15 Num. 30 January – June 2025, e851 

Step 2 involves the selection of variables to be analyzed. These variables are selected based 

on their impact on the functionality of the equipment and their suitability for analysis using 

Dynamic Bayesian Networks. Specific variables are not explicitly listed as they would vary 

depending on the equipment being analyzed, i.e. the variables to be analyzed are those relevant to 

the operation of the chosen equipment and its failure modes, and which can be effectively 

monitored and incorporated into the DBN model. It is important to select variables that influence 

each other over time, as this dynamic relationship is paramount to analysis using Dynamic 

Bayesian Networks. 

In step 3 of the process, it is determined whether continuous monitoring of any variable of 

interest is necessary for the correct operation of the selected equipment. If this need is confirmed, 

the system is classified as linear or non-linear in order to determine which type of Kalman filter is 

most suitable. 

• If the system is linear, the standard Kalman filter is used for data acquisition 

as it provides accurate and reliable estimates (step 5). 

• If the system is non-linear, the extended Kalman filter is used, an adapted 

version of the standard filter that allows a better estimation of the variables (step 6). 

Step 7 consists of reviewing the failure history of critical equipment that does not require 

continuous monitoring, as well as the results of continuous monitoring of variables, with the aim 

of identifying the failures that most affect the operation of the equipment. 

• In step 8, a fault tree is created, which will serve as the basis for building 

the dynamic Bayesian network (step 9). 

• As a result of this analysis, in step 10 priorities are established based on the 

probability of failure that could cause the equipment to stop. 

Step 11 involves implementing actions on the equipment aimed at reducing the probability 

of occurrence of the analyzed failure. The effectiveness of the implemented corrective action is 

evaluated in step 12. If it is effective, the dynamic Bayesian network is updated in step 14 so that 

the information obtained can serve as a reference in subsequent analyses. If the implemented 

actions do not reduce the probability of failure, they must be reconsidered as many times as 

necessary until an effective solution is found (step 13).
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Figure 5. Methodology for the analysis of industrial equipment maintenance using Kalman 

filters and dynamic Bayesian networks.

 

Source: Own elaboration 
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Discussion 

The developed methodology is a useful tool to identify the root cause of problems, since, 

in addition to the use of dynamic Bayesian networks, it incorporates the Kalman filter, which 

allows analysis to be carried out and conclusions to be obtained based on reliable information, 

facilitating the implementation of effective corrective actions that directly address the problem 

and, thereby, improve the performance of production equipment and existing machinery in the 

industry subject to a maintenance program, which leads to an improvement in maintenance 

indicators, which directly impact the costs associated with equipment maintenance. 

Although the calculations and procedures of the methodology, as well as the development 

of the dynamic Bayesian network, may seem extensive and complex, the use of computer programs 

speeds up the calculations and allows obtaining the results of the analysis and the probability tables 

in a relatively short time, as observed in the work of Ramos et al. (2024). 

In addition, specialized personnel may modify certain maintenance programs to integrate 

the proposed methodology, allowing for rapid implementation of corrective actions and the 

assignment of priorities. 

Among the most used programs for the analysis and construction of networks are R and 

BayesiaLab, used by Conrady and Jouffe (2015), because they have a sophisticated and user-

friendly graphical interface. 

 

Conclusions 

The application of dynamic Bayesian networks is of great help to perform an in-depth 

analysis of the equipment's behavior and to visualize how the variables interact over time. This 

makes it possible to effectively find the causes that cause failures in the different equipment, which 

allows corrective actions to be taken that truly attack the root of the problems that cause failures 

in the equipment. In addition, this tool provides information on the probability of failures 

occurring, which allows corrective actions to be prioritized according to their impact and to reduce 

the incidence of failures, thus improving equipment performance. This approach directly impacts 

the main indicators of the maintenance department in the industrial field, such as the mean time 

between failures (MTBF) and the mean time to repair (MTTR). 
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This analysis method is applicable to any maintenance technique, as it allows effective data 

processing, which can be updated periodically to evaluate the interaction of variables at different 

time intervals. 

The use of the Kalman filter in its different versions allows obtaining more reliable 

information, since, through appropriate software, it eliminates noise in the measurements that 

could generate incorrect readings and affect the quality of the analysis. 

The application of this methodology improves maintenance indicators, making it a valuable 

tool for industrial maintenance departments seeking to optimize equipment performance and 

reduce costs. 

 

Future Lines of Research 

Given the importance of the maintenance department in industrial plants and the need to 

perform more efficient analyses to eliminate problems at the root, it is essential to integrate these 

techniques into the maintenance control software. Likewise, the proper selection of monitoring 

equipment is crucial to achieve continuous improvement objectives, which are essential in an 

increasingly competitive market. 
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