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Abstract 

Fruit dehydration is a widely used technique to extend shelf life, minimize waste, and 

preserve nutritional quality by reducing moisture content, which inhibits enzymatic activity 

and microbial growth. However, traditional dehydration methods are often inconsistent due 

to subjective assessments, environmental factors, and prolonged drying times. This study 

introduces an artificial intelligence (AI) approach to optimize tomato dehydration, employing 

a simple neural network model to predict relative humidity levels during drying. The goal is 

to enhance product quality, automate the process, and potentially reduce energy consumption. 

Experimental dehydration at different temperatures and thicknesses provided insights into 

organoleptic and nutritional effects, with sensory analysis identifying an optimal drying 
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temperature of 50°C. The results support AI integration in food dehydration for enhanced 

control, quality, and sustainability. Future research may focus on integrating real-time energy 

consumption data and multidimensional variables into AI models to optimize this process 

further. 

Keywords: Artificial intelligence, fruit dehydration, nutritional properties, relative 

humidity. 

 

Resumen 

La deshidratación de frutas es una técnica ampliamente utilizada para extender la vida útil, 

reducir el desperdicio y mantener la calidad nutricional mediante la disminución del 

contenido de humedad, limitando la actividad enzimática y el crecimiento microbiano. Sin 

embargo, los métodos tradicionales de deshidratación suelen ser inconsistentes debido a la 

evaluación subjetiva, factores ambientales y tiempos prolongados de secado. Este estudio 

introduce un enfoque de inteligencia artificial (IA) para optimizar el proceso de 

deshidratación de tomates. Se emplea un modelo de red neuronal simple para predecir los 

niveles de humedad relativa durante el secado, con el objetivo de mejorar la calidad del 

producto, automatizar el proceso y reducir potencialmente el consumo de energía. Los 

experimentos de deshidratación a distintas temperaturas y espesores permitieron evaluar los 

efectos sobre las propiedades organolépticas y nutricionales, identificando una temperatura 

de secado óptima de 50°C. Los resultados respaldan la integración de IA en la deshidratación 

de alimentos para mejorar el control, la calidad y la sostenibilidad. Investigaciones futuras 

podrían centrarse en la integración de datos de consumo energético en tiempo real y datos 

multidimensionales en los modelos de IA para optimizar aún más este proceso. Los resultados 

mostraron que el modelo de IA predijo con precisión los parámetros óptimos de 

deshidratación, reduciendo las variaciones en el contenido de humedad final. Además, se 

observó una mejor conservación de nutrientes, como la vitamina C y los antioxidantes, en 

comparación con los métodos tradicionales. El sistema automatizado produjo tomates con 

mejores propiedades organolépticas y una calidad más uniforme. Este estudio demuestra el 

potencial de la IA para mejorar los procesos de deshidratación de frutas, optimizando su 

eficiencia y calidad nutricional. La futura implementación de estos algoritmos podría 

transformar la industria alimentaria al hacerla más precisa y consistente. 

Palabras Clave: Inteligencia artificial, deshidratación de frutas, propiedades nutricionales, 

humedad relativa. 
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Resumo 

A desidratação de frutas é uma técnica amplamente utilizada para prolongar a vida útil, 

reduzir o desperdício e manter a qualidade nutricional, diminuindo o teor de umidade, 

limitando a atividade enzimática e o crescimento microbiano. Entretanto, os métodos 

tradicionais de desidratação são frequentemente inconsistentes devido à avaliação subjetiva, 

fatores ambientais e longos tempos de secagem. Este estudo apresenta uma abordagem de 

inteligência artificial (IA) para otimizar o processo de desidratação do tomate. Um modelo 

simples de rede neural é usado para prever os níveis de umidade relativa durante a secagem, 

com o objetivo de melhorar a qualidade do produto, automatizar o processo e potencialmente 

reduzir o consumo de energia. Experimentos de desidratação em diferentes temperaturas e 

espessuras permitiram avaliar os efeitos nas propriedades organolépticas e nutricionais, 

identificando uma temperatura ótima de secagem de 50°C. Os resultados apoiam a integração 

da IA na desidratação de alimentos para melhorar o controle, a qualidade e a sustentabilidade. 

Pesquisas futuras podem se concentrar na integração de dados de consumo de energia em 

tempo real e dados multidimensionais em modelos de IA para otimizar ainda mais esse 

processo. Os resultados mostraram que o modelo de IA previu com precisão os parâmetros 

ideais de desidratação, reduzindo as variações no teor de umidade final. Além disso, foi 

observada melhor preservação de nutrientes, como vitamina C e antioxidantes, em 

comparação aos métodos tradicionais. O sistema automatizado produziu tomates com 

melhores propriedades organolépticas e qualidade mais uniforme. Este estudo demonstra o 

potencial da IA para melhorar os processos de desidratação de frutas, otimizando sua 

eficiência e qualidade nutricional. A implementação futura desses algoritmos pode 

transformar a indústria alimentícia, tornando-a mais precisa e consistente. 

Palavras-chave: Inteligência artificial, desidratação de frutas, propriedades nutricionais, 

umidade relativa. 

Fecha Recepción: Septiembre 2024                                             Fecha Aceptación: Marzo 

2025 

 

 

 

 



 

                                  Vol. 15 Num. 30 Enero – Junio 2025, e849 

Introduction 

Fruit dehydration is a widely used technique to extend shelf life, minimize waste, and 

preserve nutritional quality. The primary objective of food dehydration is to reduce its 

moisture content. This inhibits enzymatic activity and limits microbial growth in food. The 

key variables influencing moisture removal are exposure time, temperature, slice size, and 

orientation. The desired moisture level is determined by the type of final product and the food 

regulations of each country or customer (Monsalve, 2007). However, conventional 

dehydration methods frequently rely on subjective observation and decision-making, leading 

to inconsistent results (Madhankumar, 2023). External factors such as environmental 

exposure, pollution, and animal interference can further compromise product quality. 

Additionally, prolonged drying times pose economic challenges (Espinosa, 2023). 

Consequently, automated machines with specific quality control measures have been 

developed to mitigate these issues. 

The global food market is shifting toward sustainability and health-conscious 

products. A significant proportion of this trend is represented by the consumption of 

dehydrated foods, particularly in the United States and Europe (Mordor Intelligence, n.d.). 

Interestingly, most dried and dehydrated products are not consumed directly but rather find 

their way into various indirect consumer markets (Doymaz, 2007). Dehydrated ingredients 

are commonly found in instant soups, sauces, teas, and various processed foods. Even frozen 

meals, whole-grain breakfast snacks, and trail mixes often incorporate dehydrated 

ingredients. Food security is a major concern worldwide, as approximately one-third of 

global food production (around 1.3 billion tons of food) is lost annually due to inadequate 

processing (Gustavsson, 2011). Food waste not only represents the loss of food itself but also 

the squandering of resources utilized in its production, such as land, water, energy, and labor. 

Furthermore, wasted food contributes to massive carbon emissions, which are a major driver 

of the current global warming crisis (Gustavsson, 2011). Therefore, proper food processing 

must be emphasized to reduce this massive loss, promote food security, mitigate global 

warming, and combat hunger. Drying or dehydration is a food preservation method that 

inhibits the growth of bacteria, yeasts, and molds through the removal of water (Gustavsson, 

2011) (Sengkhamparn, 2019) (Sullivan, 2020) . 

 The Mexican government’s 18-24 work agenda emphasize food self-sufficiency, 

aiming to increase domestic production of grain (corn, beans, wheat, and rice) as well as 

livestock products (milk, beef, pork, chicken and fish) (Secretaría de Agricultura y Desarrollo 
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Rural, 2024) This production includes the storage and transportation of food, so the correct 

dehydration can help solve this problem. A major contributor to food loss within the industrial 

production chain is inadequate storage and limited shelf life. Many products, particularly 

fruits, are not subjected to proper dehydration protocols. This results in postharvest losses of 

up to 28%, driving up retail costs, and negatively impacting the global economy (Anaya, 

2017). 

On the other hand, ANNs are emerging as a powerful predictive modeling tool within 

the field of food science, demonstrating increasing significance in addressing complex 

challenges and optimizing various processes (Florez, 2008) (Khan, 2022). Technology has 

made tremendous strides, and artificial intelligence (AI) has aided numerous scientific fields 

by tackling problems that were once considered insurmountable (Alaloul, 2020). One 

application of artificial intelligence leverages ANNs to estimate calculations that are often 

time-consuming or, as in the case of fruit drying, necessitate laborious, exhaustive, and 

expensive experimental setups (Benítez, 2014). 

This paper focuses on presenting a straightforward methodology for utilizing artificial 

intelligence (AI) as a tool in the fruit dehydration process with a simple neural network 

model, employing relative humidity measurements in an instructive manner that is easily 

reproducible. The methodology encompasses data collection through model development, 

with the overarching goal of enabling future implementation of this model within a 

dehydrator to enhance product quality, facilitate automation, and potentially reduce energy 

consumption. Additionally, results from dehydration experiments conducted at varying 

temperatures and fruit thicknesses are discussed, along with their impact on organoleptic and 

nutritional properties. 

 

Materials 

The general methodology for the treatment of tomato samples (Gómez, 2019) has the 

following steps: 
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Figure 1. Methodology 

 

Source: Own elaboration based on (Gomez, 2019) 

• Raw Material Selection: This process aimed to obtain tomatoes with uniform color 

and shape. Fresh saladette tomatoes (solanum lycopersicum), procured from a local 

supermarket, were selected as the raw material. The chosen tomatoes exhibited a 

vibrant red color, were free of surface blemishes, and displayed visual indicators of 

optimal ripeness. Additionally, they were visually assessed to be of uniform size. In 

preparation for processing, each tomato was thoroughly washed with soap and water 

to remove any adhering particulate matter, followed by disinfection with a 

bactericidal agent.  

 

Figure 2. Raw Material 

 

Source: Own Elaboration 

• Data generation: An industrial air convection oven was rented, equipped with internal 

temperature sensors and a humidity sensor at the outlet. Data was transmitted to a 

computer, which recorded the information used for training the neural network. The 

temperature recorded corresponded to the interior of the oven, and the humidity was 

measured as relative humidity at the oven’s exit. The oven was equipped with a 
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thermocouple with an accuracy of ±0.5°C for temperature sensing, an anemometer 

with an accuracy of ±0.1 m/s to measure air velocity, and a capacitive sensor with an 

accuracy of ±3% RH for monitoring relative humidity. The oven’s core incorporated 

a microcontroller that received data from these sensors and regulated both the 

temperature and air velocity generated by electric heaters and fans. Due to rental 

conditions, further technical details could not be disclosed. 

• Tomatoes sample preparation: Three groups of saladette tomatoes (Solanum 

lycopersicum), each weighing 1 kilogram (for a total of 3 kilograms), were used. Each 

group was dried at a different temperature: 45°C, 50°C, and 55°C. Each kilogram was 

then divided into three subgroups with different slice thicknesses: 0.75 mm, 1.5 mm, 

and 3 mm. 

 

Figure 3. Sample Preparation 

 

Source: Own Elaboration 

A digital caliper was used to verify slice thickness, and a measuring tape confirmed 

the dimensions of each slice. To ensure consistent and uniform slices, a mandoline 

with adjustable thickness was used. 
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Figure 4. Sample Preparation 

 

Source: Own Elaboration 

• Obtaining drying data.: Each of the three groups of one kilogram was dried at the 

three distinct temperatures mentioned above (45°C, 50°C, and 55°C). The drying 

process continued until the relative humidity (%RH) at the oven’s exit reached 

between 16% and 20%. The final dataset was then randomly partitioned into two 

halves, each containing input and output vectors. The first half was designated as the 

training dataset, while the second half served as the testing dataset. The training 

dataset was utilized to train the model, while the testing dataset validated the trained 

model by comparing predicted outputs against actual data, assessing the model's 

accuracy and generalization capabilities. (Please see appendix A) 

• Artificial neural network configuration: The neural network architecture consisted of 

an input layer with a single neuron, followed by two hidden layers with three neurons 

each, and an output layer with a varying number of neurons, depending on the specific 

task (Fuentes G., 2023). 

 

Figure 5. ANN Configuration 

 

Source: Own Elaboration with NN SVG  
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• Obtaining the model through the Neural Network: The neural network training used 

the dataset described in the previous step, which was employed to estimate the model 

parameters corresponding to the underlying equation. Upon completion of training, 

the trend of the loss function over time was observed as the model minimized error, 

ultimately converging to a final loss value close to zero. 

 

Figure 6. Loss Function 

 

Source: Own Elaboration 

• Weight Change Calculation Equation: The equation used to calculate the proportion 

of weight change with respect to relative humidity during the dehydration process 

took into account the relative humidity of the material: 

∆𝑤 = 𝑤𝑖

∆%𝐻𝑅 − 𝐻𝑑

𝐻𝑑
 

As: 

i. ∆𝑤= proportion of weight change 

ii. 𝑤𝑖 = initial weight 

iii. ∆%𝐻𝑅 = relative humidity percentage during a dehydration process 

iv. 𝐻𝑑 = desired humidity in product 

This equation assumed that weight loss was primarily due to water removal, with 

negligible contributions from other factors, such as the loss of volatile compounds. 

Additionally, it assumed a linear relationship between moisture loss and weight 
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change (Fuentes G., 2023). While this equation did not directly calculate weight 

change, it effectively targeted a relative humidity level of 16% in tomatoes, a 

commonly used benchmark in food processing. (Fuentes G., 2023). 

• Quantification of Phenolic Compounds: To evaluate the effect of dehydration 

temperature and slice thickness on nutrient content, a quantification of phenolic 

compounds was conducted. Phenolic compounds in tomatoes encompass various 

phytochemicals, including flavonoids, phenolic acids, and tannins, which are vital for 

plant physiology and defense, as well as for human health due to their antioxidant and 

anti-inflammatory properties. The concentration of phenolic compounds was 

quantified in terms of gallic acid equivalents (mg GAE/g dry basis) using a gallic acid 

calibration curve. Tests were outsourced to a certified private laboratory for accuracy. 

Following the experimental setup described in Section 2, a total of 3 kg of tomatoes 

were prepared for dehydration. Each kilogram was dehydrated at different 

temperatures and subdivided into three groups based on slice thickness (0.75 mm, 1.5 

mm, and 3 mm), as shown in Table 1. 

 

Table 1. Process Parameters for Tomato Dehydration Trials 

Temperature 

(ͦ C) 

Sample 

thickness 

Time 

(seconds) 

Time  

(Hours) 

%Relative  

humidity 

(%HR) 

45 0.75 6650 1.84 20.7 

45 1.5 7100 1.97 20.4 

45 3.0 7873 2.20 19.6 

50 0.75 6784 1.84 16.9 

50 1.5 7050 2.00 16.6 

50 3.0 7334 2.03 15.9 

55 0.75 5650 1.56 17.5 

55 1.5 6500 1.80 16.9 

55 3.0 7196 1.90 16.40 

Source: Own Elaboration 
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• Sensory Panel Evaluation: A sensory panel was conducted to assess texture, aroma, 

color, and flavor. This panel consisted of five experts, all professionals with 

substantial experience in food-related fields, including chefs and food industry 

specialists. 

The sensory panel followed a structured protocol in a controlled setting. Participants 

were seated in individual tasting booths under neutral lighting to minimize visual 

biases. Each expert received standardized evaluation sheets to record their 

perceptions, which included the following: 

1. Hedonic Scale: Experts rated the overall acceptability on a 5-point 

scale (1 = ‘strong dislike’, 5 = ‘strong preference’). 

2. Texture Profile Test: A texture profile test was conducted to evaluate 

key textural attributes: hardness, chewiness, and elasticity. These 

attributes were rated on a 5-point scale, with 1 representing "does not 

meet the attribute" and 5 indicating "fully meets the texture attribute." 

3. Quantitative Descriptive Analysis (QDA): Experts assessed the 

intensity of key sensory attributes, including sweetness, acidity, and 

tomato flavor. Each attribute was rated on a 5-point numerical scale, 

where 1 signified "does not possess the attribute" and 5 represented 

"fully possesses the attribute." 

 

Results 

• Verification of the artificial neural network training: As shown in Figure 7, the time 

evolution of the model's estimated data closely aligns with the real data. The mean 

squared error between these two datasets is 0.04. 

 

Figure 7. Model Validation.

 

Source: Own Elaboration 
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• Tomato dehydration organoleptic results: The visual outcomes of the tomato 

dehydration process are illustrated in Figures 8, where distinct differences in color 

among the three samples are evident. The images on the left correspond to samples 

dehydrated at lower temperatures. As reported in relevant literature, color is closely 

linked to the concentration of lycopene and other essential nutrients.  

 

Figure 8. Loss of Color and Mass. 

 

Source: Own Elaboration  

The panel's evaluation indicated that tomato samples dehydrated at 50°C, regardless 

of thickness, were the most favored. Samples dehydrated at 55°C were slightly less 

preferred, whereas those dehydrated at 45°C received the lowest scores. Figure 9 

presents these results. 
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Figure 9. Effect of Temperature (45, 50, 55 ͦ C) and Slice Thickness (0.75, 1.5, 3.0 mm) 

 

Source: Own Elaboration 

• Behavior of Variables: Measurements of the variables were recorded every second. 

The collected data captures the temporal evolution of temperature, airflow at the 

oven’s outlet, and the relative humidity percentage of the product (Figures 10-11). 

"TD" (Target Dryer Temperature) refers to the target temperature maintained within 
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the dryer chamber throughout the dehydration process, measured in degrees Celsius 

(°C) (Figure 12). 

 

Figure 10. Relative Humidity Behavior 

 

Source: Own Elaboration 

Figure 11. Temperature Behavior 

 

Source: Own Elaboration 
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Discussion 

The primary goal of nutrition is to provide the body with the sustenance required for 

optimal growth and development. However, human culinary practices, driven by the pursuit 

of flavor and texture, often prioritize palatability over nutritional value (Degwale, 2022).  

Fuentes (2023) presents a training model using the evolution of tomato weight over 

time. This methodology presents certain challenges, as temperature fluctuations occur during 

the process due to tomato weight measurements. The advantages of the present study lie in 

the indirect measurement of tomato humidity, ensuring compliance with the humidity and 

nutritional requirements demonstrated by laboratory results. 

This research aims to identify the balance between nutrient content and sensory 

appeal, utilizing this data to train a neural network model. Studies by Degwale (2022), 

Yegrem (2022) and Umeohia (2024) focus on nutritional properties, exploring dehydration 

techniques, packaging, and other conditions to optimize nutrient retention in dehydrated 

tomatoes and other product. Most of this data is used to train artificial intelligence models 

for dehydration machines. However, no reports integrate organoleptic data into AI training 

to optimize its performance. 

As observed in the temperature and thickness datasets, the impact on nutrient levels, 

though detectable, is not substantial but remains significant. This is significant as it indicates 

that despite variations in thickness and temperature, the nutritional composition remains 

relatively consistent with %HR as the principal goal, (remember that 16 % HR is the principal 

reference to the dehydration process). Concerning organoleptic properties, the diner's 

preference was to get samples at 50 degrees Celsius. With these results, the data for the 

artificial neural network training is selected and can be implemented in the oven and not 

using the weight data measurements through the process as (Fuentes G., 2023). 

Future research could investigate the temporal evolution of the equipment's electric 

power consumption, incorporating relative humidity measurements alongside organoleptic 

and nutritional properties presented in this work. This multi-dimensional dataset could then 

be used to further refine and optimize the training process for an artificial neural network 

model to achieve not only the nutritional and industry requirements but also organoleptic 

properties, important for the diners’ consumers. 
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Conclusions 

This research highlights the potential of artificial intelligence (AI), specifically using 

ANNs, to optimize the fruit dehydration process. By focusing on the critical parameter of 

relative humidity (%RH), the study demonstrates that it is possible to achieve consistent 

dehydration results while preserving nutritional content, even when varying factors such as 

temperature and slice thickness. The developed ANN model, trained on data collected from 

tomato dehydration experiments, accurately predicted the relationship between %RH and 

weight change, showcasing the efficacy of AI in modeling complex food processing 

dynamics. The findings further highlight the delicate balance between nutritional quality and 

sensory attributes in food processing. While higher dehydration temperatures might lead to 

faster processing times, they could also negatively impact nutrient levels and sensory appeal. 

The study's organoleptic tests revealed a preference for tomatoes dehydrated at 50°C, 

suggesting an optimal temperature range indicating an optimal temperature range that 

maintains both nutritional quality and sensory appeal. The integration of AI into food 

dehydration processes holds promising implications for the future. By enabling precise 

control over %RH and other critical parameters, AI can facilitate automation, enhance 

product quality, and potentially reduce energy consumption. The ability to predict and control 

dehydration outcomes based on real-time data can lead to significant advancements in food 

processing efficiency and sustainability. 

Future research directions include expanding the scope of data collection to 

encompass the temporal evolution of dehydration equipment and incorporating 

measurements of %RH alongside organoleptic and nutritional properties. The resulting 

multi-dimensional datasets can be leveraged to refine ANN models further, enabling even 

more precise control and optimization of dehydration processes. The continued exploration 

of AI's potential in food science and technology is crucial for addressing the challenges of 

food security, sustainability, and nutritional quality in an ever-evolving global landscape. 

 

 

 

 

 

 

 



 

                                  Vol. 15 Num. 30 Enero – Junio 2025, e849 

Future research directions 

Future research should focus on integrating artificial intelligence (AI) into embedded 

systems for real-time monitoring and autonomous control of the drying process, optimizing 

energy consumption and enhancing efficiency through microcontroller-based 

implementations. Additionally, expanding AI applications to the dehydration of other food 

products, such as mangoes, bananas, and chili peppers, will allow for comparative analyses 

of drying dynamics and nutrient retention across different food matrices. The incorporation 

of multidimensional data, including real-time measurements of temperature, humidity, color, 

and texture, will improve model accuracy, particularly through the use of advanced deep 

learning architectures such as recurrent neural networks (RNNs). Furthermore, the 

development of explainable AI (XAI) models will enhance interpretability and provide 

insights into key dehydration parameters, facilitating the implementation of hybrid 

approaches that combine neural networks with physical drying models. Lastly, the 

automation of the drying process using AI-driven control systems, coupled with computer 

vision for real-time quality assessment, holds significant potential to optimize both product 

quality and energy efficiency in industrial food processing. 
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Appendix A 

Figure 12. Example of dataset entries used for training the neural network. 

 

Source: Own Elaboration 

Figure 13.  Python code for configuring and training the recurrent neural network (RNN).

 

Source: Own Elaboration 
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